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Abstract: Coastal ecosystems undergoing rapid urbanisation have characteristics of both natural and
artificial ecosystems. How we evaluate the dynamic impact of human activities on coastal ecosystems
is important for coastal zone management and development. In this study, we first developed a
method to extract both the natural and artificial features of coastal land cover, and classified the coastal
landscapes impacted by human activities from an ecological service perspective. We then constructed
an ecological interference index for classification to evaluate the impact of coastal human interference
on both artificial and natural ecosystems during rapid urbanisation. Lastly, we verified our method
by applying it to the coastal zone in Shenzhen, China. Our results show that this method can describe
the effects of human activities on coastal zones in more detail. The distribution of human activity was
mainly associated with the geomorphology of the coastal zone. Changes in human interference were
seen strongly in proximity to both the landward and coastal boundaries of the study area, in close
correlation with the public’s increasing conscience for ecological environment protection.

Keywords: human activities; human interference; anthropogenic activities intensity; rapid urbanisation;
coastal area; Shenzhen

1. Introduction

Urbanisation is a trend of progress and development in society which symbolises human civilisation
and social progress [1]. Coastal cities often become the centres of human activities and economic
development because of their special geographical location and abundant resources [2,3]. However,
with the growth of the urban population, the conflict between people and land is prominent [4–6].
The coastal zone plays an important role in alleviating the conflict between people and the land in
coastal cities during rapid urbanisation.

Due to the coastal zone’s special location where sea and land intersect to form a sensitive and
fragile ecosystem [7,8], significant changes to land cover patterns have been made by increasing human
activities. A large amount of ecological and agricultural land has been converted to residential and
industrial land. These large changes in regional ecological patterns [9–11] may lead to a series of

Sustainability 2020, 12, 2254; doi:10.3390/su12062254 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-2484-2080
https://orcid.org/0000-0002-3279-6520
http://www.mdpi.com/2071-1050/12/6/2254?type=check_update&version=1
http://dx.doi.org/10.3390/su12062254
http://www.mdpi.com/journal/sustainability


www.manaraa.com

Sustainability 2020, 12, 2254 2 of 15

ecological and environmental problems, such as coastal erosion [12], wetland loss [13], deterioration of
offshore water quality [14], etc. How to quantify the anthropogenic interference in coastal zones under
the influence of rapid urbanisation is an important question to answer for coastal scientific governance
and sustainable development [8,15].

Presently, quantitative evaluation methods of human activities in the coastal zone mainly focus on
research using environmental vulnerability indices or ecological risk indices [16–18]. Researchers have
also discussed interference caused by individual elements of human activity on the coastal landscape,
such as agricultural activities [19] and deforestation [20]. Because the coastal zone is influenced by
urbanisation and the coupled ecosystem of land and sea, it shows typical dual characteristics of both
an urban zone and the vulnerabilities of a coastal zone. Therefore, it is necessary to quantitatively
evaluate the impacts of human activity on coastal zones under the influence of rapid urbanisation
from both artificial and natural ecosystem perspectives to reveal the rate and extent of anthropogenic
impacts on landscape patterns in the coastal zone [8].

Human interference assessment methods based on the Hemeroby index (HI) are widely used to
quantitatively evaluate human interference in different types of ecosystems such as forests, grasslands,
wetlands, agricultural areas and cities [21–26]. These methods were built on the basis of anthropogenic
interference theory [27] to evaluate the impact of human activities on plants. This theory has been
gradually developed into an important indicator to measure human disturbance in the ecosystem [28–30].
The basic theory is based on the regional land cover types and assigns a disturbance index for different
types of human activities [31].

In this paper, considering coastal zones undergoing rapid urbanisation are often disturbed by both
natural evolutionary processes and human activities such as urban construction and land expansion,
human activities here are classified into either positive or negative ecological element types. Remote
sensing and Geographic information systems were used to construct the feature extraction method for
classifying coastal land cover under rapid urbanisation. To take into account the different ecological
effects of natural and artificial ecosystems, the ecological interference index was built to evaluate the
impacts of human interference on both natural and artificial ecosystems. Lastly, this paper analysed
the characteristic changes in human interference during the urbanisation process (1980–2015) in the
Shenzhen coastal zone, revealing the spatial-temporal differences caused by human activities during a
period of rapid urbanisation.

2. Study Area

The study area was the coastal zone of Shenzhen city, Guangdong province, China (Figure 1). As a
typical coastal city, Shenzhen was the first special economic zone in China since the ‘reform and opening
up’ (an important historical Chinese policy for the open economic development of industrialisation
and modernisation), which created the so-called ‘Shenzhen speed’. Human activities such as coastal
development and reclamation are intense in coastal zones, which is key to support rapid urbanisation.

Because of its quite different geomorphology between east and west coastal zones, this coastal
ecosystem shows both typical natural (mainly in the west) and artificial (mainly in the east)
characteristics, which makes it an ideal study area to quantitatively research the impact of human
interference from an ecological perspective. The west coast rises from Dongbao Estuary in the north to
Shenzhen Bay in the south and is mainly mudflats; the east coast dominated by natural coast (rocky
coast and sandy beach) includes Daya Bay and Dapeng Bay, whose coastlines are full of twists and
turns [32]. These differences in geomorphology mean that spatial distribution in the land cover types
shows a typical east-west split, which leads to human activities of different intensities.

The Shenzhen coastal zone covers a 10 km buffer zone on the landward side of the coastline
across the boundary with Hong Kong (this is a commonly used spatial range of coastal zone surveys in
various countries, extending about 10 km inland [33]). The area of this coastal zone is about 1185.3 km2

and the coastline is about 457 km long.
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Reflecting the fact that rapidly urbanised coastal zones are greatly affected by human activities, 
artificial surfaces rapidly become the main land cover type in these areas. Land cover data from 1980, 
1990, 2000, 2010 and 2015 were used as the basis for human interference assessment. Partial time 
series (1990, 2000 and 2010) came from the 30 m landcover dataset provided by the project ‘National 
Change in Ecological Environment over a Decade (2000–2010) Remote Sensing Survey and 
Assessment’ [34]. In 1990 and 2000, the land type classification accuracy of this data was 85% [35], 
and the land type classification accuracy of this data at level I in 2010 was 86% [36].  

Furthermore, adopting the classification system of the above data, we combined it with multi-
source remote sensing images (Table 1, http://glovis.usgs.gov/) and topographic data (a Digital 
Elevation Model (DEM) and slope), coastline data, GF-1 satellite data and Google map data (1979/12, 
2015/12). From these, land cover data from 1980 and 2015 were extracted using eCognition and 
Arcmap software. The coastline data extracted from the remote sensing images were used in 
combination with the geomorphological features of the coastal sections in the Shenzhen coastal zone 
(rocky, muddy and artificial coast). 

Table 1. Data sources. 

Data set Path number Row number Landsat MSS/OLIdate 

1980 130 44 1979-09-30 
131 44 1979-10-19,1975-11-18 

2015 
121 44  2015-02-13,2015-08-08 
122 44 2015-01-03,2015-10-18 

3.2. Land Cover in Rapidly Urbanised Coastal Zones  

The land cover in the Shenzhen coastal zone in 1980 and 2015 was classified by combining 
spectral reflectance and textural characteristics. The exact classification steps are shown in Figure 2. 
The land cover classification in coastal zone was built (Table 2). Firstly, the fused image is segmented, 
then feature selection is carried out. Finally, a decision tree is built to classify objects and extract land 
cover types. 

Figure 1. Location of study area.

3. Data and Methods

3.1. Data Collection and Pre-Processing

Reflecting the fact that rapidly urbanised coastal zones are greatly affected by human activities,
artificial surfaces rapidly become the main land cover type in these areas. Land cover data from 1980,
1990, 2000, 2010 and 2015 were used as the basis for human interference assessment. Partial time series
(1990, 2000 and 2010) came from the 30 m landcover dataset provided by the project ‘National Change
in Ecological Environment over a Decade (2000–2010) Remote Sensing Survey and Assessment’ [34].
In 1990 and 2000, the land type classification accuracy of this data was 85% [35], and the land type
classification accuracy of this data at level I in 2010 was 86% [36].

Furthermore, adopting the classification system of the above data, we combined it with multi-source
remote sensing images (Table 1, http://glovis.usgs.gov/) and topographic data (a Digital Elevation
Model (DEM) and slope), coastline data, GF-1 satellite data and Google map data (1979/12, 2015/12).
From these, land cover data from 1980 and 2015 were extracted using eCognition and Arcmap software.
The coastline data extracted from the remote sensing images were used in combination with the
geomorphological features of the coastal sections in the Shenzhen coastal zone (rocky, muddy and
artificial coast).

Table 1. Data sources.

Data Set Path Number Row Number Landsat MSS/OLIdate

1980
130 44 1979-09-30
131 44 1979-10-19,1975-11-18

2015
121 44 2015-02-13,2015-08-08
122 44 2015-01-03,2015-10-18

3.2. Land Cover in Rapidly Urbanised Coastal Zones

The land cover in the Shenzhen coastal zone in 1980 and 2015 was classified by combining
spectral reflectance and textural characteristics. The exact classification steps are shown in Figure 2.
The land cover classification in coastal zone was built (Table 2). Firstly, the fused image is segmented,

http://glovis.usgs.gov/
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then feature selection is carried out. Finally, a decision tree is built to classify objects and extract land
cover types.

Table 2. Coastal land cover classification with rapid urbanisation.

Land Cover Types Meaning Land Cover Types Meaning

Wetland Forest marshes, shrub marshes, rivers,
reservoirs and aquaculture Bare land Natural, loose surface

Woodland Natural forest, plantation, sparse forest Traffic land Main highway, general highway, ridge
Garden plot Arbor garden, shrub garden Residential land Residential land

Grassland Herbaceous green space Industrial land
Land for mining, oil and gas
Exploitation and industrial

enterprises
Cultivated land Paddy field, land for xerophytic crops - -

Detailed land cover classification is based on the extraction of a combination of spectral and textural
features. NDWI (Normalized Difference Water Index, [37]), which is sensitive to water body information,
is used to distinguish ‘wetland’ versus non-water based landcover types. NDVI (Normalized Difference
Vegetation Index, [38]) is sensitive to vegetation information, therefore, a threshold is set to distinguish
vegetation from non-vegetation. ‘Cultivated land’, ‘forests’ and ‘grasslands’ can be distinguished based
on the DEM and slope. Because the coastal zone is relatively flat, most cultivated land is located there.
By combining texture and distance, ‘woodland’ and ‘grassland’ types can be distinguished. The
non-vegetation areas are divided into bare land and non-bare land by the DEM and the Bare Soil
Index (BSI). For non-bare land, ‘construction land’ and ‘roadways’ are distinguished by calculating
the length-width ratio, while ‘residential land’ and ‘industrial land’ are identified by using BI (the
brightness index), BSI and NDBI (Normalized Difference built-up Index, [39]), and classified according
to the difference in their reflectivity.
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In order to evaluate the accuracy of the classification results, for 1980, 285 verification points on
Google Earth (historical images) were chosen for calculating a confusion matrix and Kappa coefficient
based on visual interpretation (Table 3). For the classification in 2015, 285 ground sampling points
were used to calculate a confusion matrix and Kappa coefficient (Table 4). The overall score was more
than 85%, which satisfies the accuracy requirements.
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Table 3. Accuracy evaluations of land cover in 1980.

Reference
images

Evaluation Images

Total Accuracy
Type Woodland Grassland Wetland Cultivated

Land
Garden

Plot
Industrial

Land Roadways Residential
Land Bare Land

Woodland 164 1 2 167 98.20
Grassland 2 7 2 1 12 58.33
Wetland 3 2 18 2 25 72.00

Cultivated land 1 6 7 85.71
Garden plot 5 2 23 30 76.67

Industrial land 4 1 5 80.00
Traffic land 1 9 2 1 13 69.23

Residential land 1 18 19 94.74
Bare land 2 5 7 71.43

Total 174 10 20 10 27 5 12 21 6 285
User’s accuracy 94.25 70.00 90.00 60.00 85.19 80.00 75.00 85.71 83.33

Overall accuracy = 89.12%; Kappa coefficient = 82.35%.

Table 4. Accuracy evaluations of land cover in 2015.

Reference
images

Evaluation Images

Total Accuracy
Type Woodland Grassland Wetland Cultivated Land Garden Plot Industrial

Land Roadways Residential Land Bare
Land

Woodland 148 1 1 1 2 153 96.73
Grassland 1 8 2 11 72.73
Wetland 1 7 1 9 77.78

Cultivated land 1 8 1 10 80.00
Garden plot 2 35 37 94.59

Industrial land 5 1 4 2 12 41.67
Traffic land 10 1 11 90.91

Residential land 1 3 26 30 86.67
Bare land 1 1 10 12 83.33

Total 174 152 10 8 11 39 7 15 30 13 285
User’s accuracy 94.25 97.37 80.00 87.50 72.73 89.74 71.43 66.67 86.67 76.92

Overall accuracy = 90.18%; Kappa coefficient = 85.47%.
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3.3. Method for Assessing the Impact of Human Interference in Coastal Zones Undergoing Rapid Urbanisation

Different patterns in regional landscapes are a reflection of the different effects of human activities.
To express human activities in more detail, the landscape types were classified into positive and negative
ecological elements [40], representing positive and negative ecological effects (Table 5). To accomplish
this, an ecological interference index was built based on the Hemeroby index [41] to assess the impacts
that different aspects of human activity have on coastal zones undergoing rapid urbanisation.

This system was based on a land cover classification system for urban ecosystems. The grade
of land use from an ecological perspective was also considered [42] along with the contribution rate
of ecosystem services across different land cover types [43]. The degree of human interference in a
landscape can be divided into ‘no interference’, ‘half interference’ and ‘total interference’. Among
them, positive ecological factors correspond to ‘no interference’ and ‘half interference’, as these provide
certain ecological services. Negative ecological factors correspond to ‘total interference’, that is,
man-made surfaces and bare land (mainly unused land for reclamation), which is the main type
of landscape associated with human activity in the coastal zone. With the above classification and
previous research results [29,43], the ecological interference index for the main landscape types (Table 5)
was determined to measure the ecological interference of human activities in a coastal zone undergoing
rapid urbanisation.

Table 5. Ecological interference index classification of landscape types in a coastal zone undergoing
rapid urbanisation.

Ecological Types Primary Type Secondary Type Ecological Interference Index

Positive ecological
elements

No interference Wetland 0.25

Half interference

Woodland 0.55
Garden Plot 0.55
Grassland 0.55

Cultivated land 0.70

Negative
ecological elements Total interference

Bare land 0.80
Traffic land 0.95

Residential land 0.95
Industry land 0.98

4. Results and Analysis

4.1. Dynamic Analysis of the Spatial Distribution of Human Activities in a Coastal Zone

Land cover data from 1980 to 2015 are shown in Figure 3. As can be seen, changes in land cover
were mainly concentrated in the western coastal zone due to the differences in geological structure
between the eastern and western zones [44]. In 1980, woodland, garden plot and cultivated land
types were widely distributed, however residential land and industrial land were scattered in the
background of these otherwise positive ecological elements. After a decade of rapid development in
the ‘reform and opening up’, great changes had taken place in the western part of Shenzhen by 1990.
There was almost 450.86 hm2 of land reclaimed per year from 1978 to 1994, which was an amazingly
rapid acceleration in reclamation [42]. During this period, cultivated land almost disappeared and
only a small area remained, embedded in the background of residential land areas. Many different
types of land transferred into residential land in this period. After 2000, with the progression of
further urbanisation, the speed of reclamation accelerated. Urbanisation of the land extended to the
sea; residential and industrial land continued to increase and further adjustments between different
land cover types resulted in higher spatial connectivity and greater regularity in the shape of the land
cover areas. In detail, the distribution of the residential areas gradually began to extend inland and the
scale of industrial land near the coastline gradually expanded. The rapid urbanisation of the coastal
zone was at a cost, with the reduction and removal of positive ecological elements such as woodland,
grassland, garden plot and cultivated land types. Cultivated land was the first to go, followed by
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grassland, garden plots and then finally woodlands, which reflects the gradual urban enhancement
made by urban planners, countered by managers’ awareness of the need to protect the ecological
environment. For instance, from 2010 to 2015, the positive ecological elements in the western coastal
areas increased.
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4.2. Evaluation of the Impact of Human Interference

Here we take 2015 as an example to explain the evaluation of human interference using our method.

4.2.1. Spatial and Temporal Changes in Ecological Elements

In order to analyse the changing characteristics in the utilisation of different land cover types
during urbanisation, area ratio (the ratio of the total area of each land type to the total area of the
research area) was calculated for each time point (Figure 4).

Among the positive ecological elements (Figure 4a), the proportional area of wetlands and
grasslands changed little, and this area was small. Wetlands decreased from 0.04 (1980) to 0.02 (2015),
and the grassland increased from 0.004 to 0.008. The proportional area of cultivated land declined
continuously from 1980 to 2015 (0.23 to 0.02). The proportional area of woodlands decreased slowly
and continuously from 1980 to 2010 (0.48 to 0.39) but increased to 0.52 from 2015. The increased
woodland area was mainly located in coastal areas (mostly mangroves). The area ratio of the garden
plots decreased slowly from 1980 to 2015 (0.13 to 0).

Based on the analysis of the negative ecological elements (Figure 4b), the proportional area of
bare land and roadways was small and showed little change, with a decrease by 0.001 and increase
by 0.003 respectively across 35 years. The proportional area of residential land increased the most,
from 0.086 in 1980 to 0.334 in 2015, and it was the largest growing land cover type in the process
of coastal urbanisation. In detail, there were three stages: a rapid growth period (growth 0.129) in
1980–1990, a sustained growth period (growth 0.113) in 1990-2010 and a stable period (growth 0.005) in
2010-2015. The growth of the industrial land could also be divided into three periods: a rapid sustained
growth period in 1980-2000 (0.008 to 0.042), an accelerated growth stage from 2000 to 2010 (increased
0.031) and a stable period in 2010-2015 (0.073 to 0.077), which reflects the transformation of the city
from an era of industrialisation to science and technology.
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4.2.2. Evaluation of Positive and Negative Ecological Elements

Different types of human activities with different ecological values show different spatial
distribution patterns (Figure 5a,b). After comparing and analysing the spatial distribution of human
interference for both negative and positive ecological elements in the study area in 2015, we found that
negative ecological factors were relatively concentrated in the western part of the coastal zone, showing
a strong spatial aggregation effect. The interference indices for the residential, industrial and roadway
areas were high, at 0.95, 0.98 and 0.95, respectively. Most of these land cover types have continuous
distributions and therefore cause wide range destruction. Positive ecological elements were relatively
concentrated in the east and inland areas of the west. The interference index of cultivated land was
calculated at 0.70, but the distribution was sporadic and discontinuous. The development of the city on
the eastern coast is influenced by geomorphology and other factors, so the positive ecological elements
in this area were relatively concentrated and mainly woodland (interference index: 0.55). As a result,
the interference index is small and the ability to withstand the impact of human activities is strong.
However, the positive ecological elements on the west coast were scattered, of which the main types
were wetland and grassland, with interference indices of 0.25 and 0.55, respectively. The intensity
of interference in the west is stronger than that in the east, and interferences from human activities
are greater.
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Overall, the spatial distribution of human interference shows significant east-west differences.
The intensity of human interference in the western region decreases gradually on an axis orthogonal to
the coastline from the coastline inland, indicating a trend in increasing intensity of human activities
extending to the sea. While the high intensity of human activities in the eastern region (greater
than 0.95) was mainly distributed along the coastline and in inland zone areas far from the coastline.
The highest interference values in the study area were mainly distributed in the area near Qianhai
Bay and Yantian Port. The intensity of human interference in the Shenzhen Bay Mangrove Nature
Reserve was low. The interference value in the wetland area was predominantly zero, though this
was fragmented, and the Patch Density (PD) changed from 0.002 to 0.068, calculated by the software
ArcMap. The distribution of human interference is closely related to the distribution of different types
of human activities, limited by coastal landscape patterns.

4.3. Dynamic Change in Human Interference (1980 to 2015)

4.3.1. Transfer between Positive and Negative Ecological Elements

Table 6 shows the area transferred between positive and negative ecological elements. The transfer
area from positive ecological elements to negative ecological elements initially reduced from 158.77 km2

(1980–1990) to 88.15 km2 (1990–2000), but then rapidly increased to 120.27 km2 during the period of
2000 to 2010, with a final fast decrease down to 6.66 km2 (2010–2015). At the same time, the area of
transfer from negative ecological elements to positive ecological elements continuously increased.
The transfer area from 1980 to 1990 was 0.14 km2, the period from 2000 to 2010 was 6.69 km2, and this
increased to 51.87 km2 from 2010 to 2015. When coastal urbanisation causes ecological damage, people
begin to rebuild positive ecological elements, so the transfer area from negative ecological elements to
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positive ecological elements grew bigger. This revealed that the coastal urbanisation came at a cost for
the environment. The speed and degree of the sacrifice to the environment depended on the increasing
consciousness of human beings towards protecting the ecological environment when developing land
in the coastal zone.

Table 6. Transfer between positive and negative ecological elements.

Year Transfer Types Transfer Area (km2)

1980 to 1990
Positive to Negative ecological

elements 158.77

Negative to Positive ecological
elements 0.14

1990 to 2000 Positive to Negative ecological
elements 88.15

2000 to 2010
Positive to Negative ecological

elements 120.27

Negative to Positive ecological
elements 6.69

2010 to 2015
Positive to Negative ecological

elements 6.66

Negative to Positive ecological
elements 51.87

4.3.2. Dynamic Change in Human Interference from 1980 to 2015

Dynamic changes in the scale of human interference in the Shenzhen coastal zone from 1980
to 2015 are shown in Figure 6. The intensity of human interference in the Shenzhen coastal zone
rapidly increased from 1980 to 2000 but slowed down from 2000 to 2015. Overall, in the past 35
years the total area affected by human interference rapidly increased and was mainly concentrated
in the western coastal zone. Human activities mainly changed from ‘non-interference’ types to ‘total
interference’ types. This was because the land reclamation and development/management were mainly
concentrated on the west coast [45]. Spatially, the areas with greater interference and more drastic
changes were mainly concentrated in the western coastal zone and in the eastern towns, coastal beaches,
and ports where human activities are frequent. This is consistent with the conclusion by Yi et al. [46]
that the western coast is a muddy coast with comprehensive development, and where reclamation is
the main human activity; while in the east, the rocky coastal area is only partially reclaimed, while the
sandy coastal area is fully developed for tourism but the development intensity is weak. From 1980 to
2010, the fragmentation of the highest human interference gradually collated (the PD changed from
0.007 to 0.0005), especially in the western region. From 2010 to 2015, the impact of human interference
changed little and the average value was higher in the western region. So, it can be seen that the change
in intensity of human interference does not show a gradual trend of decreasing from the coastline
inland, but rather extends for a certain distance along both the coastline and inland region. The growth
rate towards the coastline is higher than that towards the inland boundary, moreover, the degree of
spatial aggregation of the interference factors is higher on the seaside than on the land side. Pan [47]
also found that the distance from the coastline is one of the key factors affecting the spatial distribution
of land use in the eastern and western coastal zones while simulating the land-use change in the
Shenzhen coastal zone based on a CLUE-S model.



www.manaraa.com

Sustainability 2020, 12, 2254 11 of 15

Sustainability 2019, 11, x FOR PEER REVIEW 11 of 15 

 
Figure 6. Dynamic change in human interference in Shenzhen’s coastal zone from 1980 to 2015. 

5. Discussion and Conclusions 

Considering that coastal zones undergoing rapid urbanisation are characterised by both natural 
and artificial ecosystems, we built a classification index with positive and negative ecological 
elements to define human activities with different effects. This paper then proposed an ecological 
interference index to uniformly evaluate the impact of coastal human activities on natural and 
artificial ecosystems. Finally, we characterised human interference since the ‘reform and opening up’ 
(1980–2015) of Shenzhen to verify this method. 

High-precision extraction of land cover features is key for guaranteeing accurate evaluation of 
human interference. The method of land cover feature extraction we proposed used object-oriented 
classification, combining spectral reflectance and textural features to construct decision trees, giving 
an accuracy of more than 85% which meets the requirements of previous research. Evaluation of the 
results obtained by this method showed that it can reveal different spatial distribution patterns of 
interference from different types of human activities with different ecological values. Negative 
ecological factors had a strong spatial aggregation effect on the west coastal zone while the positive 
ecological factors were mainly distributed in the east. The impacts of human activities were limited 

Figure 6. Dynamic change in human interference in Shenzhen’s coastal zone from 1980 to 2015.

5. Discussion and Conclusions

Considering that coastal zones undergoing rapid urbanisation are characterised by both natural
and artificial ecosystems, we built a classification index with positive and negative ecological elements
to define human activities with different effects. This paper then proposed an ecological interference
index to uniformly evaluate the impact of coastal human activities on natural and artificial ecosystems.
Finally, we characterised human interference since the ‘reform and opening up’ (1980–2015) of Shenzhen
to verify this method.

High-precision extraction of land cover features is key for guaranteeing accurate evaluation of
human interference. The method of land cover feature extraction we proposed used object-oriented
classification, combining spectral reflectance and textural features to construct decision trees, giving
an accuracy of more than 85% which meets the requirements of previous research. Evaluation of
the results obtained by this method showed that it can reveal different spatial distribution patterns
of interference from different types of human activities with different ecological values. Negative
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ecological factors had a strong spatial aggregation effect on the west coastal zone while the positive
ecological factors were mainly distributed in the east. The impacts of human activities were limited in
the east due to the greater challenges for development in this coastal zone. Coastal geomorphology in
the east of Shenzhen is more complicated than in the west, so urbanisation in the west is easier than
in the east. This led to significant east-west differences in human interference, with the west bearing
greater interference than in the east.

Many factors drive coastal development including national policy, Gross National Product (GDP),
permanent population size, etc., which all determine how the intensity of human
interferenceinterference is distributed. Under the guidance of the national policy ‘reform and
opening up’, GDP and the permanent population of Shenzhen increased sharply, which led to
land shortages and faster urbanisation in this city than other coastal cities, even faster than that of
Shanghai, which is one of the most rapidly developing economies in the world [48]. Shanghai was
still a stage of rapidly urbanisation in 2005 when the urbanisation rate in Shenzhen had already
reached 100% [49]. We can see features of this urbanisation process from dynamic analysis of
human interference in Shenzhen’s coastal zone. Across the period from 1980 to 2015, the intensity
of human interferenceinterference gradually plateaued. During the first decade of this period,
most of the ecological elements went from experiencing low-intensity interference to high-intensity
interference (0.25 to 0.98, 0.55 to 0.95), while maintaining continuous spatial distributions. Over time,
this process began to change and more ecological elements were transferred into the highest-intensity or
lowest-intensity brackets; elements subject to lower-intensity interference moved to the lowest-intensity
bracket, while elements subject to higher-intensity interference shifted to the highest-intensity bracket
(0.7 to 0.98, 0.8 to 0.95). This transferral process to the extremes of low and high intensity gradually
decreased toward 2015. Overall the intensity of human interferenceinterference in this period first
increased sharply, before gradually stablilising. This is consistent with the trends in GDP and
permanent population size [40]. These findings reflect the variable features that drive the intensity of
human interference during the transformation from industrial-based urbanisation to a science and
technology focus.

Land cover also reveals spatial-temporal distribution features of human activity [50]. The changes
in land cover from 1980 to 2015 showed that coastal urbanisation in Shenzhen occurred mainly to
resolve the shortage of residential and industrial land. These changes converged towards the coastline
and were at the cost of a reduction in woodland, grassland, garden plots, and cultivated land. This is
consistent with the known characteristics of the social and economic development of Shenzhen [46].
Consideration of the changes in the spatial distribution of land cover types, shifts in the proportional
area of positive versus negative ecological elements and the transfer between these areas revealed that
the coastal urbanisation process initially began in a stage of industrialisation, which then developed to
a focus on science and technology after 2010. During this process, people’s awareness of the need to
protect the ecological environment gradually became stronger. There was also a trend of increasing
human interference at a certain distance along both the coastline and the inland boundary of the
study area.

Due to the different types of human activities distributed in the west than the east and the
corresponding differences in landscape types, the same level of human interference on these different
landscapes should have different effects. In the future, evaluations of human interference also need to
consider the heterogeneous effects of human activities.
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